

Substitution Method

Kuan-Yu Chen (陳冠宇)

2019/03/12 @ TR-310-1, NTUST

Review

$f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$ imply $f(n) = \Theta(h(n))$

$f(n) = O(g(n))$ and $g(n) = O(h(n))$ imply $f(n) = O(h(n))$

$f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$ imply $f(n) = \Omega(h(n))$

$f(n) = o(g(n))$ and $g(n) = o(h(n))$ imply $f(n) = o(h(n))$

$f(n) = \omega(g(n))$ and $g(n) = \omega(h(n))$ imply $f(n) = \omega(h(n))$

$$f(n) = \Theta(f(n))$$

$$f(n) = O(f(n))$$

$$f(n) = \Omega(f(n))$$

$$f(n) = \Theta(g(n)) \text{ if and only if } g(n) = \Theta(f(n))$$

$$f(n) = O(g(n)) \text{ if and only if } g(n) = \Omega(f(n))$$

$$f(n) = o(g(n)) \text{ if and only if } g(n) = \omega(f(n))$$

Introduction

- Recall that in divide-and-conquer, we solve a problem recursively, applying three steps at each level of the recursion
 - ***Divide*** the problem into a number of subproblems that are smaller instances of the same problem
 - When the subproblems are large enough to solve recursively, we call that the ***recursive case***
 - Once the subproblems become small enough that we no longer recurse, we say that the recursion “***bottoms out***” and that we have gotten down to the ***base case***
 - ***Conquer*** the subproblems by solving them recursively
 - If the subproblem sizes are small enough, however, just solve the subproblems in a straightforward manner
 - ***Combine*** the solutions to the subproblems into the solution for the original problem

Recurrences

- A *recurrence* is an equation or inequality that describes a function in terms of its value on smaller inputs

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

- There are three methods for obtaining asymptotic “ Θ ” or “ O ” bounds on the solution
 - Substitution method
 - Recursion-tree method
 - Master method

Substitution Method.

- The ***substitution method*** for solving recurrences comprises two steps:
 1. Guess the form of the solution
 2. Use mathematical induction to find the constants and show that the solution works
- For example
 - Let us determine an upper bound on the recurrence

$$T(n) = 2 \times T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n$$

- We guess that the solution is

$$T(n) = O(n \log_2 n)$$

- The substitution method requires us to prove that $T(n) \leq cn \log_2 n$ for an appropriate choice of the constant $c > 0$

Substitution Method..

- Substituting into the recurrence

$$\begin{aligned} T(n) &= 2 \times T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n \\ &\leq 2 \times \left(c \left\lfloor \frac{n}{2} \right\rfloor \log_2 \left(\left\lfloor \frac{n}{2} \right\rfloor \right) \right) + n \\ &\leq 2 \times \left(c \frac{n}{2} \log_2 \left(\frac{n}{2} \right) \right) + n = cn \log_2 \left(\frac{n}{2} \right) + n \\ &= cn \log_2 n - cn \log_2 2 + n \\ &= cn \log_2 n - cn + n \end{aligned}$$

- If $c \geq 1$

$$T(n) \leq cn \log_2 n - cn + n \leq cn \log_2 n$$

Making a Good Guess

- Unfortunately, there is no general way to guess the correct solutions to recurrences
 - Guessing a solution takes experience and, occasionally, creativity
- A way to make a good guess is to prove **loose** upper and lower bounds on the recurrence and then reduce the range of uncertainty
 - Take $T(n) = 2 \times T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n$ for example
 - Lower bound
$$T(n) = \Omega(n)$$
 - Upper bound
$$T(n) = O(n^2)$$

Subtleties

- Sometimes you might correctly guess an asymptotic bound on the solution of a recurrence, but somehow the math fails to work out in the induction

- Take $T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + 1$ for example

- Guess the solution is $T(n) = O(n)$
 - We have to show that $T(n) \leq cn$ for a constant c
 - Substituting our guess in the recurrence

$$T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + 1 \leq c \left\lfloor \frac{n}{2} \right\rfloor + c \left\lceil \frac{n}{2} \right\rceil + 1 = cn + 1 \not\leq cn$$

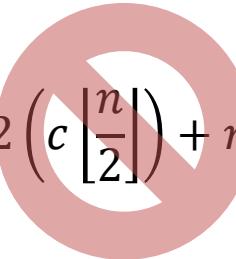
- Let guess $T(n) \leq cn - d$, where $d \geq 0$

$$T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + 1 \leq \left(c \left\lfloor \frac{n}{2} \right\rfloor - d\right) + \left(c \left\lceil \frac{n}{2} \right\rceil - d\right) + 1 = cn - 2d + 1 \leq cn - d$$

- The inequality is true if $d \geq 1$, that is $T(n) = O(n)$
 - Consider a **stronger** inductive hypothesis

Pitfalls

- It is easy to err in the use of asymptotic notation
 - Take $T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n$ for example
 - Guess the solution is $T(n) = O(n)$
 - We have to show that $T(n) \leq cn$

$$T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n \leq 2\left(c\left\lfloor \frac{n}{2} \right\rfloor\right) + n \leq cn + n = (c + 1)n = O(n)$$


- The **error** is that we have not proved the *exact form* of the inductive hypothesis $T(n) \leq cn$

Changing Variables

- Sometimes, a little algebraic manipulation can make an unknown recurrence similar to one you have seen before
 - Take $T(n) = 2T(\lfloor \sqrt{n} \rfloor) + \log_2 n$ for example
 - It looks difficult!
 - Let $m = \log_2 n \Rightarrow 2^m = n$, $2^{\frac{m}{2}} = (2^m)^{\frac{1}{2}} = \sqrt{2^m} = \sqrt{n}$
 - Changing variables: $T(2^m) = 2T\left(\left\lfloor 2^{\frac{m}{2}} \right\rfloor\right) + m$
 - Moreover, let $S(m) = T(2^m) \Rightarrow S(m) = 2S\left(\left\lfloor \frac{m}{2} \right\rfloor\right) + m$
 - Since we know the solution for $T(n) = 2 \times T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n$ is $O(n \log_2 n)$
 - Thus, the solution for $S(m) = 2S\left(\left\lfloor \frac{m}{2} \right\rfloor\right) + m$ is $O(m \log_2 m)$
 - Changing back: $T(n) = T(2^m) = S(m) = O(m \log_2 m) = O(\log_2 n \log_2 \log_2 n)$

Questions?

kychen@mail.ntust.edu.tw